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Large language models surpass human 
experts in predicting neuroscience results
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Scientific discoveries often hinge on synthesizing decades of research, a task 
that potentially outstrips human information processing capacities. Large 
language models (LLMs) offer a solution. LLMs trained on the vast scientific 
literature could potentially integrate noisy yet interrelated findings to 
forecast novel results better than human experts. Here, to evaluate this 
possibility, we created BrainBench, a forward-looking benchmark for 
predicting neuroscience results. We find that LLMs surpass experts in 
predicting experimental outcomes. BrainGPT, an LLM we tuned on the 
neuroscience literature, performed better yet. Like human experts, when 
LLMs indicated high confidence in their predictions, their responses were 
more likely to be correct, which presages a future where LLMs assist humans 
in making discoveries. Our approach is not neuroscience specific and is 
transferable to other knowledge-intensive endeavours.

Keeping up with the exponentially increasing1 scientific literature is a 
superhuman challenge. Potentially disruptive findings go unnoticed 
in the deluge of articles2. Processing and integrating the myriad of 
relevant findings may already surpass humans’ abilities.

One path forward involves human scientists leveraging advanced 
machines. This approach could take several forms, including specialist 
solutions that address specific challenges, such as in protein folding3, 
drug discovery4 and materials science5. Alternatively, general models of 
the scientific literature could help guide human scientists’ predictions 
and study designs. We consider this possibility.

It is an open question whether large language models (LLMs), 
trained on general text and scientific articles, can predict the outcomes 

of experiments. If LLMs’ predictions surpassed human experts, the 
practice of science and the pace of discovery would radically change. 
We consider this question for neuroscience, which is a large and inter-
disciplinary field. Prediction in neuroscience should be challenging for 
human experts for several reasons: (1) there are often many thousands 
of relevant scientific articles, (2) an individual study can be noisy or 
unreliable and may not replicate, (3) neuroscience is a multi-level 
endeavour6, spanning behaviour and molecular mechanisms, (4) and 
the analysis methods are diverse and can be complex7, (5) as are the 
methods used, which include different brain imaging techniques, 
lesion studies, gene modification, pharmacological interventions 
and so forth.
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(t(14) = 25.8, P < 0.001, Cohen’s d = 9.27, 95% confidence interval (CI) 
0.17–0.2; two-sided; Fig. 3a). When restricting human responses to 
those in the top 20% of self-reported expertise for that test item, accu-
racy rose to 66.2%, still below the level of LLMs.

Smaller models such as Llama2-7B and Mistral-7B with 7 billion 
parameters performed comparably to larger models (Fig. 3a) while 
besting even smaller models (Supplementary Fig. 2) that may lack the 
capacity to capture key data patterns. Chat or instruction-optimized 
models performed worse than their base model counterparts 
(t(5) = 5.38, P = 0.002, Cohen’s d = 0.77, 95% CI 0.02–0.04; two-sided). 
We suspect that aligning LLMs to engage in natural language conversa-
tions hinders their scientific inference abilities (Discussion).

The previous analyses involved benchmark items created by 
co-authors who are neuroscience experts (Methods). We conducted the 
same analyses using test cases generated by a LLM, namely, GPT-4 (Meth-
ods), and observed similar results (Supplementary Figs. 20, 21 and 23).

Performance breakdown by subfield and by participant type. 
BrainBench encompasses test cases from five distinct neuroscience 
domains: behavioural/cognitive, cellular/molecular, systems/circuits, 
neurobiology of disease and development/plasticity/repair. Some 
domains, particularly behavioural/cognitive, are overrepresented both 
in BrainBench (Fig. 3B) and in the Journal of Neuroscience from which 
we drew our test cases (Methods).

On average, LLMs performed better than human experts in every 
subfield (Fig. 3b), as did each individual LLM (Supplementary Fig. 5). 
Most human experts were doctoral students, postdoctoral research-
ers or faculty/academic staff (Fig. 3c). Please refer to Supplementary 
Information for more detailed demographic information including 
years of experience in neuroscience research about the human experts 
and distributions of self-reported expertise by subfield (Supplemen-
tary Fig. 17).

Can LLMs meet these challenges? In other domains, LLMs have 
performed impressively. Upon its release, OpenAI’s ChatGPT8 cap-
tured the public’s imagination with its abilities. Most LLMs are based 
on the transformer architecture9. These models contain billions and 
sometimes trillions of weights10, which are tuned during training in 
a self-supervised manner to predict the next token, such as the next 
word in a text passage.

LLMs have displayed remarkable capabilities, including passing 
professional exams, reasoning (although not without limitations), 
translation, solving mathematics problems and even writing computer 
code11,12. By constructing a statistical model during their training to 
predict the next token, whether that token is a word, pixel or protein 
sequence13, and by capturing patterns in the training data, including 
subtle and imperfect ones, the generative LLMs can potentially general-
ize to novel situations and predict outcomes of future events.

How can we formally evaluate the predictive abilities of LLMs in 
neuroscience? With the rise of LLMs, there has been a surge in evaluation 
benchmarks, many of which focus on assessing LLMs’ capabilities in sci-
entific domains. Most benchmarks evaluate core knowledge retrieval 
and reasoning abilities, which are typically backward-looking (Fig. 1). 
Backward-looking benchmarks include MMLU14, PubMedQA15 and Med-
MCQA16. These benchmarks are structured in a question-and-answer 
format, where models must demonstrate extensive world knowledge, 
retrieve relevant information based on the context of the question, 
and answer correctly. However, none of these benchmarks is suitable 
for evaluating the ability of models to predict novel outcomes, which 
is inherently forward-looking (Fig. 1).

To address this need, we developed BrainBench to test LLMs’ ability 
to predict neuroscience findings (Fig. 2). LLMs have been trained exten-
sively on the scientific literature, including neuroscience. BrainBench 
evaluates whether LLMs have seized on the fundamental patterning of 
methods and results that underlie the structure of neuroscience. Can 
LLMs outperform human experts on this forward-looking benchmark? 
In particular, BrainBench evaluates how well the test-taker can predict 
neuroscience results from methods by presenting two versions of an 
abstract from a recent journal article. The test-taker’s task is to predict 
the study’s outcome, choosing between the original and an altered ver-
sion. The altered abstract substantially changes the study’s outcome 
(that is, results) while maintaining overall coherence.

To appreciate how BrainBench qualitatively differs from existing 
benchmarks, consider a perceived limitation of LLMs, namely, their 
tendency to generate erroneous information, a phenomenon com-
monly referred to as ‘hallucination’ by LLM researchers. Unlike knowl-
edge graphs that store verified facts, LLMs may not be trustworthy for 
backward-looking tasks such as summarizing research papers or pro-
viding accurate citations17. However, for forward-looking tasks, such 
as predicting results from a novel experiment, we view this tendency to 
mix and integrate information from large and noisy datasets as a virtue. 
What is a hallucination in a backward-looking task is a generalization 
or prediction in a forward-looking task (for example, BrainBench). 
BrainBench provides a way to quantify this forward-looking ability 
and compare with human experts. To foreshadow our results, LLMs 
surpassed human experts on BrainBench by a substantial margin, 
and this margin increased when we provided additional training in 
neuroscience to an LLM, which we refer to as ‘BrainGPT’.

Results
General-purpose LLMs best neuroscientists on BrainBench
On each benchmark trial (Fig. 2), both the LLMs18–21 and human experts 
were tasked with selecting which of two versions of an abstract was 
correct (that is, the original version). Human neuroscience experts 
were screened for their expertise and engagement (Methods) with 171 
out of 202 participants passing all checks and included in our analyses.

Every LLM outperformed human experts on BrainBench with 
LLMs averaging 81.4% accuracy and human experts averaging 63.4% 

Who is more likely to win
the next round?

‘When was the Gettysburg
Address delivered?’

PredictionQuiz

Backward-looking Forward-looking

a b

A.   Player A
B.   Player B

A.   1862
B.   1863

Fig. 1 | Backward-looking and forward-looking evaluations. a, Backward-
looking benchmarks involve recalling factual information. For example,  
a student retrieves a fact about the Gettysburg Address that they learned during  
a history class. Existing benchmarks in scientific domains are in essence 
backward-looking as they emphasize retrieving accepted facts for question 
answering and reasoning tasks. b, Forward-looking benchmarks involve 
predicting novel outcomes on the basis of past data. Two forms of uncertainty, 
aleatoric (due to intrinsic randomness) and epistemic (due to lack of knowledge), 
may be present. For example, a table tennis fan predicts which player will win the 
next set on the basis of their knowledge of the players, how they have played  
so far today and so forth. Inherent random factors, such as a breeze affecting the 
ball’s flight, will also be present.
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Do judgements from LLMs and human experts align? We considered 
whether human experts and LLMs found the same benchmark items 
difficult. For humans, we calculated the mean accuracy for each of 
the 200 test cases. For LLMs, we calculated the signed differences in 
perplexity between incorrect and correct abstracts for each test case. 
Perplexity measures how surprising a text passage is to an LLM. Using 
these measures (Supplementary Fig. 6), the mean Spearman correla-
tion between an LLM and human experts was 0.15 (±0.03), whereas the 
mean Spearman correlation between LLMs was 0.75 (±0.08).

LLMs can integrate information across context. To better understand 
the basis for the remarkable performance of LLMs (see Supplemen-
tary Fig. 3 for results), we investigated whether their performance 
was achieved by integrating information throughout the abstract 
(including the method used) or by solely relying on the local context 
in the results passages that differed between the original and altered 
abstract (Fig. 2)

We reevaluated the LLMs on individual sentences containing only 
the altered results passage (that is, local context only). LLMs performed 

Behavioural/
cognitive

Development/
plasticity/repair

Cellular/molecular

Systems/circuits

Forward-looking evaluation

‘Chooses A’

Expertise

Confidence

Confidence

Abstract

Background

Neuroscientists

LLMs

Finding A
(original)

Finding B
(alternative)

Method

Neurobiology
of disease

BrainBench

Perplexity(A) = 1.459

Perplexity(B) = 2.173

PPL(B) PPL(A)

Fig. 2 | BrainBench is a forward-looking benchmark for neuroscience. 
BrainBench evaluates test-takers' ability to predict neuroscience results. 
BrainBench’s test cases were sourced from recent Journal of Neuroscience 
abstracts across five neuroscience domains: behavioural/cognitive, systems/
circuits, neurobiology of disease, cellular/molecular and developmental/
plasticity/repair. Test-takers chose between the original abstract and one altered 
to substantially change the result while maintaining coherency. Human experts 

and LLMs were tasked with selecting the correct (that is, original) version from 
the two options. Human experts made choices and provided confidence and 
expertise ratings in an online study. LLMs were scored as choosing the abstract 
with the lower perplexity (that is, the text passage that was less surprising to the 
model), and their confidence was proportional to the difference in perplexity 
between the two options.
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Fig. 3 | Performance of human experts and LLMs on BrainBench. a, LLMs 
outperformed human experts on BrainBench (t(14) = 25.8, P < 0.001, Cohen’s 
d = 9.27, 95% CI 0.17–0.2; two-sided). Smaller models are on par with larger 
models. Base versions of models outperformed chat and instruct versions 
(t(5) = 5.38, P = 0.002, Cohen’s d = 0.77, 95% CI 0.02–0.04; two-sided), which were 
tuned to be conversational with humans. The error bars represent the standard 
error of the accuracy. Each model was evaluated on 200 BrainBench test cases.  
In total, 171 human experts were evaluated on the same test cases over 1,011 

trials. b, The distribution of test cases across neuroscience subfields roughly 
mirrors the distribution of articles in the Journal of Neuroscience with behaviour/
cognitive overrepresented. The average performance of 15 LLMs and human 
experts is shown. LLMs outperformed human experts in every subfield (see 
Supplemetary Fig. 5 for the full results). c, The participants were predoctoral 
students (ntrial = 104), doctoral students (ntrial = 300), postdoctoral researchers 
(ntrial = 255), faculty/academic staff (ntrial = 256), research scientists (ntrial = 72) and 
others (ntrial = 24). The error bars represent the standard error of the accuracy.
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much worse when restricted to this local context (Supplementary 
Fig. 3), which provides strong evidence that LLMs are integrating infor-
mation across the abstract, including information on background 
and methods. LLM’s superior performance relative to human experts 
appears to arise from integrating information across the abstract.

In addition, we analysed whether LLMs benefitted from a gen-
eral neuroscience context (similar to few-shot prompting) rather 

than integrating study-relevant information. We tested models using 
abstracts with sentences randomly swapped from within the same 
neuroscience subfield. Both original and altered abstracts were used to 
reevaluate LLMs’ performance. As shown in Supplementary Fig. 4, there 
was a significant performance decline with coherent versus swapped 
contexts, indicating that LLMs only partially benefit from accurate, 
domain-specific but non-study-relevant context.
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Fig. 4 | Accuracy and confidence are calibrated for human experts and LLMs. 
When human experts and LLMs are confident in their BrainBench judgements, 
they are more likely to be correct. Confidence ratings were sorted and placed 
in equally sized bins with the mean accuracy for items in that bin plotted. 

The positive slope of the black regression lines for human experts and all 
LLMs indicates that confidence is well calibrated (that is, higher confidence 
corresponds to higher accuracy). Calibration is beneficial for building human–
machine ensembles.
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LLM performance is not driven by data memorization. When LLMs 
perform well on a benchmark, one general concern is that the bench-
mark itself was part of the training set, allowing the LLM to memorize 
the correct answers. To address this concern, we used a commonly 
applied measure, the zlib–perplexity ratio, for evaluating whether 
LLMs have memorized passages22. This ratio gauges the difference 
between a data-agnostic compression rate of text and data-specific 
perplexity computed by an LLM (Methods). Passages that are hard 
to compress but have low perplexity are indicative of memorization.

We found no indication that BrainBench was memorized by LLMs 
(Supplementary Fig. 7). For comparison, we calculated the zlib–per-
plexity ratio for a passage that we suspected would be memorized by 
LLMs, namely, the Gettysburg Address. The Gettysburg Address should 
appear multiple times in an LLM’s training set, and indeed, it showed 
signs of memorization (Supplementary Fig. 7). Interestingly, for some 
LLMs, we know exactly what they were trained on (Supplementary 
Table 2). For these models, the distribution of zlib–perplexity ratios 
heavily overlapped for items that we knew were in the training set and 
for items, including BrainBench, that we knew were not in the training 
set. We suspect that the overlap may indicate that scientific articles, 
which are unlikely to repeat in training sets, are stored in LLMs as gen-
eral patterns, similar to human schemas, supporting performance 
on tasks requiring generalization (for example, BrainBench). This 
hypothesis invites future study.

As a final check (Methods and Supplementary Fig. 8), we confirmed 
that LLMs do not perform better on items published earlier in 2023 (for 
example, January 2023 versus October 2023), which addresses the con-
cern that early items are more likely to have a preprint or other precur-
sor appear in the training set that affected BrainBench performance. 
Likewise, an LLM trained from scratch on the published neuroscience 
literature, in a manner that eliminated any possible overlap between 
training data and BrainBench, displayed superhuman performance23. 
All our checks indicated that BrainBench items were novel for the LLMs.

LLMs and human experts are calibrated
To assess whether LLMs’ predictions are calibrated, we examined how 
well their confidence tracked their accuracy, a crucial characteristic for 
a trustworthy prediction system. We estimated LLMs’ confidence using 
the ranked absolute difference in perplexities between two abstracts 
(Fig. 2 and Methods) and found that, like human experts, all LLMs 
exhibited a positive correlation between accuracy and confidence. 
When LLMs are confident in their decisions, they are more likely to 
be correct (Fig. 4). In addition, we fitted logistic regressions between 
model perplexity differences to their correctness as well as human 

confidences to their correctness on the individual level. We observed 
significant positive correlations, confirming both models and humans 
are calibrated (Supplementary Table 3).

Augmenting LLMs with neuroscience knowledge to create 
BrainGPT
Pre-trained LLMs can provide a foundation for further training in neu-
roscience with the aim of improving performance, as assessed by Brain-
Bench. We used low-rank adaptation (LoRA)24 to augment a pre-trained 
LLM, Mistral-7B-v0.1, with additional neuroscience knowledge.

LoRA is a parameter-efficient fine-tuning technique that inserts 
low-rank adapter matrices into LLM transformer blocks (Supplemen-
tary Fig. 19) and trains only these LoRA weights to update the model’s 
behaviour. In our case, we fine-tuned Mistral-7B-v0.1 using over 1.3 
billion tokens from neuroscience publications spanning 100 journals 
between 2002 and 2022 (Methods), which significantly improved 
performance by 3% on BrainBench (Fig. 5a).

LoRA tuning dramatically shifted (t(199) = 15.7, P < 0.001, Cohen’s 
d = 0.25, 95% CI 0.42–0.55; two-sided) the perplexity of correct 
responses (Fig. 5b), which is indicative of the LLM specializing for 
neuroscience material. LoRA introduced 629,145,600 new weights, 
which is 8% of the total number of weights in Mistral-7B-v0.1. These 
results indicate that BrainGPT models can efficiently be derived by 
extending existing LLMs.

Discussion
We considered whether LLMs can forecast the outcome of neuroscience 
experiments. By training on the vast scientific literature, we hoped LLMs 
could build a generative model that captured the patterns underly-
ing neuroscience. To evaluate this possibility, we constructed a new 
forward-looking (Fig. 2) benchmark, BrainBench.

BrainBench assesses a test-taker’s ability to select which of two ver-
sions of a neuroscience abstract contains the actual results of the study 
(Fig. 2). We found that LLMs outperform human experts on BrainBench 
by a considerable margin (Fig. 3a) across all neuroscience subfields we 
considered (Fig. 3b). Moreover, when LLMs indicated high confidence 
in their predictions, they were more likely to be correct (Fig. 4). LLMs’ 
superior performance arose from their ability to integrate information 
throughout the abstract, such as text pertaining to the method and 
study design. When access to such information was removed, LLM 
performance drastically declined (Supplementary Fig. 3).

We found no indication that LLMs had been exposed to and memo-
rized BrainBench items during their training. Instead, our analyses sug-
gested that LLMs discovered the fundamental patterns that underlie 
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Fig. 5 | Fine-tuning a pre-trained LLM on neuroscience knowledge. Mistral-
7B-v0.1 was fine-tuned using LoRA on neuroscience articles from 2002 to 
2022 (a total of 1.3 billion tokens). a, The fine-tuned model improved by 3% on 

BrainBench. b, The fine-tuning process substantially shifted the perplexity 
distribution of correct responses, indicative of the LLM specializing in 
neuroscience.
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neuroscience studies, which enabled LLMs to predict the outcomes of 
studies that were novel to them. These conclusions were supported by 
a widely employed technique22 to determine text membership within 
an LLMs’ training set (Supplementary Fig. 7). The Galactica18 LLMs were 
particularly illuminating because we know which articles were not in 
the training set versus ones that might be. Interestingly, there was no 
indication of memorization in models such as Galactica for scientific 
articles that were in its training set, consistent with the notion that LLMs 
learn broad patterns underlying scientific fields. While passages that 
frequently repeat in the training set, such as the Gettysburg Address, 
may be memorized (Supplementary Fig. 7), scientific articles that occur 
infrequently (most likely once) in the training set appear to support 
LLM’s forward-looking predictive abilities. As a final check, we trained 
a relatively small LLM from scratch23 on the published neuroscience lit-
erature (excluding preprints and BrainBench items), which eliminated 
any possible overlap between training data and BrainBench, and found 
superhuman performance on BrainBench (Supplementary Fig. 2).

LLM’s impressive forward-looking capabilities suggest a future 
in which LLMs help scientists make discoveries. To be effective, LLMs 
need to be kept up to date with the rapidly expanding literature. We 
found that LLMs could efficiently be augmented with neuroscience 
knowledge using LoRA24, boosting performance on BrainBench 
(Fig. 5). LoRA provides a way to create BrainGPT models by reorienting 
general-purpose LLMs for use in neuroscience. One can easily imagine 
a future in which BrainGPT is near continuously updated with new 
knowledge using LoRA, along with complementary approaches such 
as retrieval-augmented generation17. Retrieval-augmented generation 
could be used to query a database of relevant and up-to-date scientific 
articles for the task at hand.

In addition to keeping LLMs up to date, benchmarks should 
routinely be refreshed and expanded to address current needs. One 
challenge is that creating forward-looking benchmarks, such as Brain-
Bench, is labour intensive and requires human expertise. To address 
this potential bottleneck, we created and evaluated 100 test cases 
using GPT-4 through a largely automated process (Methods). Although 
there is room for improvement, these items were close in quality to 
the human-created ones with 8 of the 100 items being word-for-word 
matches with the human-created versions. These efforts should pave 
the way for the rapid creation of other forward-looking benchmarks 
in neuroscience, as well as benchmarks for other knowledge-intensive 
fields. We believe high-quality forward-looking benchmarks will be 
critical to developing LLMs as tools for scientific discovery.

For LLMs to serve as trustworthy and effective tools or to form 
ensembles with humans25, LLMs’ outputs should include indicators of 
the certainty or confidence levels associated with their predictions. 
Fortunately, we found that LLMs’ confidence is well calibrated. When 
LLMs were confident in their predictions, they were more likely to be 
correct (Fig. 4). A second ingredient for effective teams is being diverse or 
complementary. LLMs have potential here as well, as the items they found 
difficult did not highly correlate with those human experts found diffi-
cult (Supplementary Fig. 6). These two ingredients, being well calibrated 
and complementary, allow systems that combine human and machine 
judgements to outperform either alone26,which holds for BrainBench27.

All our results, including those for calibrated confidence, were 
possible only because we had access to LLM weights to calculate the 
perplexity of passages (Fig. 2). Our approach diverged from the popu-
lar approach of prompting models for responses through natural 
language (that is, chat). Prompting in natural language may yield less 
reliable judgements and degrade model competency compared with 
using model probability scores or training separate classifiers directly 
from internal representations28–31. These observations underscore 
the importance of working with models that are as open as possible, 
ideally making both the weights and training set publicly available. 
Accordingly, we make BrainGPT available on the Huggingface platform 
(https://huggingface.co/BrainGPT).

Beyond serving as a tool for neuroscientists, BrainGPT can help 
reveal the structure of the field. In particular, we can vary BrainGPT’s 
training set and observe the effect on BrainBench. For example, what 
is the effect of including training data from related fields such as psy-
chology? In terms of supporting prediction, we can quantify how 
interrelated fields are. Does it help to weight articles in the training 
set by their recency, citations or impact factor? In addition to these 
training manipulations, we can vary how testing is conducted. For 
example, would step-by-step thinking via chain-of-thought reasoning32 
benefit BrainGPT? If prediction in neuroscience is akin to a deductive 
reasoning process, then it should. If instead, as we suspect, prediction 
in neuroscience is a function of many noisy intertwined signals across 
subfields, then chain-of-thought reasoning will not help. BrainGPT and 
BrainBench can help answer these meta-science questions.

We foresee a future in which LLMs serve as forward-looking gen-
erative models of the scientific literature. LLMs can be part of larger 
systems that assist researchers in determining the best experiment to 
conduct next. One key step towards achieving this vision is demonstrat-
ing that LLMs can identify likely results. For this reason, BrainBench 
involved a binary choice between two possible results. LLMs excelled 
at this task, which brings us closer to systems that are practically useful. 
In the future, rather than simply selecting the most likely result for a 
study, LLMs can generate a set of possible results and judge how likely 
each is. Scientists may interactively use these future systems to guide 
the design of their experiments.

One risk is that scientists do not pursue studies when their pre-
dictions run counter to those of an LLM. In some cases, this might 
be a sensible course of action, whereas in other cases the LLM might 
have identified potential gaps or errors in the scientific literature. In 
the latter situation, conducting the study might result in a significant 
breakthrough. Conversely, a study result that was predicted with high 
confidence by an LLM might be viewed as an incremental advance.

LLMs’ predictions are informed by a vast scientific literature that 
no human could read in their lifetime. As LLMs improve, so should 
their ability to provide accurate predictions. In this contribution, we 
focused on neuroscience but our aims are broader; we hope to provide 
a template for any knowledge-intensive field. None of the approaches 
we adopted is neuroscience specific. Indeed, the degree of efficacy of 
our approach may depend on the underlying structure of the domain. 
For instance, disciplines like mathematics, which rely heavily on logi-
cal deduction, might not benefit as much as other scientific fields that 
involve pattern-based reasoning.

We hope to democratize the use of LLMs in science and increase 
reproducibility by highlighting the use of relatively small models that 
can be run locally and whose weights are accessible, which contrasts 
with commercial products. Finally, while LLMs appear poised to sup-
plant humans at prediction, we foresee a role for human experts in 
providing the accompanying scientific explanations. Prediction is very 
important, but not everything.

Methods
We confirm that our research complies with all relevant ethical regu-
lations. Experimental Psychology Ethics Board (University College 
London) approved the study protocol (ethics protocol EP/2017/011). 
We confirm that informed consent was obtained from all human par-
ticipants. Participant compensation is not applicable to the current 
study. None of our studies was pre-registered.

Dataset creation
Co-authors (Supplementary Table 5) and GPT-4 (Azure OpenAI API; 
version 2023-05-15) created test cases that formed BrainBench. All test 
cases were sourced from Journal of Neuroscience abstracts published 
in 2023 under the Creative Commons Attribution 4.0 International 
License (CC-BY). The abstracts are organized into five sections, namely, 
behavioural/cognitive, systems/circuits, neurobiology of disease, 
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development/plasticity/repair and cellular/molecular. In constructing 
BrainBench, we incorporated a total of 200 test cases crafted by human 
experts and an additional 100 test cases generated by GPT-4 (Azure 
OpenAI API; version 2023-05-15). All test cases were subjected to exten-
sive quality control by human experts and GPT-4. For the distribution 
of test cases among subfields, refer to Fig. 3 for human-created cases 
and Supplementary Fig. 23 for GPT-4 generated cases.

To create a test case, a published abstract was modified to cre-
ate an altered version. The altered version substantially changed 
the results without changing the methods and background. Minimal 
changes were made that changed the basic result. For example, the 
altered abstract, compared with the original, could switch around 
the role of two brain regions in the results, reverse the direction of a 
result (for example, replace ‘decreases’ with ‘increases’) and so on. Any 
changes maintained the coherency of the abstract, which sometimes 
required multiple changes (for example, replacing multiple ‘decreases’ 
with ‘increases’). In other words, the altered abstracts needed to be 
empirically different but not logically incoherent. Both volunteers 
and GPT-4 are given instructions that follow the essential criteria 
above. The exact wordings to prompt GPT-4 were slightly adjusted 
to obtain good-quality test cases. We include the instructions given 
to GPT-4 verbatim below.

GPT-4 test creation prompt. ‘Your task is to modify an abstract from a 
neuroscience research paper such that the changes significantly alter 
the result of the study without changing the methods and background. 
This way we can test the Artificial Intelligence understanding of the 
abstract’s subject area.

Please read the instructions below and ensure you follow them 
one by one while you are modifying the abstracts:

- The format to submit is putting double brackets around the 
change with the first element being the original and the second element 
being your edit. E.g., [[original passage, modified passage]]. Always 
remember to wrap your edits with the double brackets; there should 
not be any other edits outside the brackets to the original abstract. - If 
you change a single word, never wrap the entire sentence inside the 
double brackets. For example, ‘… exhibit [[enhanced LTP and deficits 
in LTD, impaired LTP and enhanced LTD]].’ is a wrong format, the cor-
rect format is: ‘… exhibit [[enhanced, impaired]] LTP and [[deficits, 
enhanced]] in LTD.’ - The beginning of an abstract is the background 
and methods, so you should not alter those parts of the abstract. Do 
not alter the first couple sentences. - We want the abstract to become 
empirically wrong, but not logically incoherent. - To find the original 
result of the paper, one should require some neuroscience insight, 
not just general reasoning ability. So it is critical that the changes you 
make don’t evaluate the Artificial Intelligence reasoning ability, but 
its knowledge of neuroscience and how the brain works. - Watch out 
for making changes that alter the results, but may still have occurred 
in the authors’ study. For example, an fMRI abstract on learning might 
mention the hippocampus and not the striatum. Nevertheless, the 
striatum might have also been active and not reported in the abstract 
because it was not the focus of the study. - The changes you make should 
not be identifiable or decodable from the rest of the abstract. Hence, if 
you make a change, make sure you change everything that can reveal 
the original abstract. For example, ‘activation of neurons in the visual 
cortex [[increases, decreases]] the activity in the motor cortex. This 
decrease in the activity of the visual cortex was followed by an increase 
in task performance.’. In this case it is very clear that the correct word 
is ‘decreases’ as the next sentence (‘This decrease in the activity of the 
visual cortex’) reveals that. - Be mindful of the article when you change 
words. For example, if you change the word ‘decline’ to ‘enhancement’, 
you must change the article as well, so the change will be [[a decline, 
an enhancement]]. - Ensure that your edits maintain inter-sentence 
consistency and proper syntax. The changes should not contradict or 
confuse the overall meaning of the abstract. - Avoid making trivial edits 

that do not require understanding of scientific concepts. The edits 
should reflect a deep understanding of the subject matter. - Do not miss 
any crucial results or findings in the abstract while making the edits. 
Every significant point should be addressed in your modifications.

To generate better responses, you can use the topic of their study 
and purpose of studies in those topics. This knowledge helps you to find 
what modification you should do in the abstract. Topics are: - Behav-
ioral/Cognitive: To understand how the brain influences behavior, 
cognition, and emotion, and to apply this understanding in diagnosing 
and treating neurological and psychiatric disorders.

- Cellular/Molecular: To study are to understand the functions 
and mechanisms of neurons at a cellular and molecular level, which 
includes investigating the biology of nerve cells, their genetic makeup, 
and how they form complex circuits, ultimately contributing to our 
understanding of brain function, behavior, and the development of 
treatments for neurological disorders.

- Neurobiology of Disease: To understand the biological basis of 
various neurological and psychiatric disorders in order to develop 
effective treatments and preventative measures.

- Development/Plasticity/Repair: to understand the mechanisms 
of brain development, adaptation, and repair in response to injury 
or disease, with the goal of developing strategies and treatments to 
enhance brain recovery and function.

- Systems/Circuits: to understand how neural circuits in the brain 
interact and coordinate to process information, control behavior, and 
support cognitive functions.

Here are two examples of the edited abstract by human experts 
which can help you to understand the task:

Example 1: < example_1 >
Example 2: < example_2 >
These are some common mistakes you have made in the past. 

So keep them in mind whilst generating your responses: - You mis-
understood/ignore the information provided at the beginning of the 
abstract. - The edits you have made are not what we are aiming for, 
you tweaked a portion of the studies with non-significant findings, so 
there’s no significant alternation of results occurring. Make sure your 
edit changes the main results of the studies, not trivial changes. - Lack 
of inter-sentence consistency in the prompt - You made edits as early 
as the first sentence. THe first few sentence are general knowledge 
and are not result of the study. So you shouldn’t make any change in 
the beginning. - Most of your edits contradict the conclusion. Make 
sure your changes do not contradit the conclusions or any part of the 
abstract. - You only modified verbs the understanding of which does not 
require understanding of scientific concepts & names of compounds, 
which makes the edits less likely to do wrong as long as reasons logically 
- One of your edits contradicts all other edits. - Your edit is inconsistent 
with the beginning of the sentence - You failed to change the first part 
of the conclusion for consistency - You missed out on one change. - You 
misunderstood the purpose of the study. Although in the abstract it 
explicitly states the purpose of the study.

Below, you are given an abstract with its topic. Follow the instruc-
tions given to you and return the modified abstract. Remember to 
use double brackets to show the changes ([[original, modified]] and 
keep the rest of the abstract unchanged. Also, pay attention to all the 
information you were given above as well as the common mistakes you 
have made before.

Abstract to edit: Topic: < abstract_topic >
Abstract: < abstract_to_edit > ’

Evaluations
We tested human participants and LLMs on the BrainBench dataset. 
Both human experts and models were presented with two versions of 
the abstract, one with the actual results and one that was altered. The 
task was to determine which is which. Below, we detail how LLMs and 
human participants were tested.
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Model evaluation. We tested LLMs by adapting the Eleuther AI Lan-
guage Model Evaluation Harness framework31, which evaluates LLMs 
using a multiple choice setting. We presented LLMs with two versions of 
the abstracts from each test case separately. We prefixed each abstract 
with the prompt ‘You are a neuroscientist with deep knowledge in 
neuroscience. Here is an abstract from a neuroscience publication:’ 
and applied model-specific instruction templates where appropriate. 
We then measured the perplexity of both passages and used perplex-
ity as the indicator of whether LLMs favour one abstract or the other.

Perplexity (PPL) is one of the most common metrics for evaluating 
LLMs. Perplexity measures the degree of uncertainty of a model when 
generating a particular sequence of text. Formally, perplexity is defined 
as the exponentiated average negative log-likelihood of a tokenized 
sequence. If we have a tokenized abstract X = (x0, x1, …, xt), then the 
perplexity of X, given a LLM parameterized by θ, is

PPL(X) = exp {− 1
t

t
∑
i
logpθ(xi|x<i)} , (1)

where logpθ(xi|x<i) is the log-likelihood of the ith token conditioned on 
the preceding tokens x<i according to the LLM. Given both the original 
abstract Xorig and the altered abstract Xalt, we followed the decision rule

Xchosen = {
Xorig, if PPL(Xorig) < PPL(Xalt)

Xalt, otherwise
(2)

and evaluated the overall accuracy over the entire BrainBench 
accordingly.

Accuracy. Accuracy is the primary metric for reporting LLM perfor-
mance on BrainBench. A correct response was when the model pro-
duces a lower perplexity for the original abstract than the altered 
abstract.

Confidence calibration. We used the absolute difference of perplexities 
of two versions of the abstract as a measure of model confidence. To 
assess the calibration of LLMs, we compared their accuracies with their 
confidence levels. First, we ranked and sorted model confidence across 
all test cases. Subsequently, we created 20 bins based on this sort. 
Within each bin, we calculated the mean accuracy. A well-calibrated 
model will exhibit a higher accuracy in bins associated with higher 
confidence rankings. We fit a linear regression model using the bin 
number as the independent variable and the mean accuracy of each 
bin as the dependent variable to evaluate calibration.

Performance correlation across LLMs. We assessed the correlation in 
performance among different LLMs by examining how they rank the 
relative difficulty of test cases. To determine difficulty, we calculated 
the difference in perplexity between incorrect and correct abstracts for 
each test case. Intuitively, a large positive difference in the perplexity 
between incorrect and correct versions of an abstract should indicate 
that the test case is easy from the LLM’s perspective. We calculated the 
Spearman correlation coefficient of these difficulty measures to assess 
the agreement between two LLMs.

Integration analysis. To investigate the extent to which LLMs can inte-
grate broad context from abstracts, we conducted an experiment 
involving the removal of contextual information from BrainBench 
test cases. Following the same evaluation procedure as previously 
outlined for full abstract cases, we assessed the models using individual 
sentences extracted from abstracts containing at least one result alter-
nation. In cases with multiple alternations, we computed the mean 
accuracy across these alternations as the final accuracy for the abstract. 
We then compared the level of performance degradation when LLMs 
were evaluated on full-length abstracts versus individual sentences 

where background and method information from the abstracts  
was removed.

In addition, we tested models using abstracts whose results (in 
terms of complete sentences) are randomly swapped from abstracts 
within the same neuroscience subfield. Importantly, in these ‘swapped’ 
abstracts, the number of results remained consistent with the original. 
We applied the swapping to both original and altered abstracts and 
reevaluated LLMs’ performance.

LLM training data memorization analysis. One concern regarding LLMs 
outperforming human experts on BrainBench is the possibility that 
LLMs were exposed to the original abstracts during their pre-training. 
If LLMs have simply memorized the training data, they would naturally 
assign lower perplexity scores to the correct abstracts.

To address this concern, we employed a common method from 
the literature to determine whether a given text is part of LLM’s train-
ing data22,33. This method involves calculating the zlib entropy and the 
perplexity ratio (equation (3)) of a text sequence to infer its member-
ship status:

ratio = ZLIB(X )
PPL(X ) . (3)

Zlib entropy is computed using the zlib text compression algorithm34, 
which measures the level of uncertainty in a text when compressed. It is 
a data-agnostic way of evaluating text. On the other hand, LLM perplex-
ity depends on the specific training data and, thus, is data dependent. 
In general, if a piece of text surprises zlib but not LLM, it is probably 
part of the training data.

To conduct this test, we carefully chose data sources that are either 
known to be part of LLMs’ pre-training or reasonably assumed to be 
excluded from it (refer to Supplementary Tables 1 and 2). We then 
applied zlib compression and LLM perplexity calculations to text sam-
ples from these selected sources.

In addition, we introduced the Gettysburg Address as a special 
anchor point to contrast with the zlib–perplexity ratio distribution 
across multiple data sources. This is because we expect the Gettys-
burg Address to exhibit a high zlib score due to its non-modern form 
of English, coupled with a low perplexity, given its probably frequent 
exposure during LLM pre-training.

Finally, we analysed the Spearman correlation between the publi-
cation dates of the abstracts that make up BrainBench test cases against 
the test cases’ difficulties to LLMs. This was to address the concern that 
early items are more likely to have a preprint or other precursor appear 
in the training set memorized by LLMs. If there was memorization, we 
would expect a negative correlation between publication date and dif-
ficulty. We determined difficulty by using the difference in perplexity 
between incorrect and correct abstracts for each test case.

Human evaluation. Participants. We recruited 202 neuroscience 
experts via social media and an email newsletter. We excluded 31 par-
ticipants for failing to answer both catch trials correctly, not providing 
confidence or expertise ratings during the entire experiment, and 
self-reported cheating. The remaining 171 participants consisted of 51 
doctoral students, 43 faculty/academic staff, 43 postdoctoral research-
ers, 18 predoctoral students, 12 research scientists and 4 classified as 
‘other’. Participants’ mean experience in neuroscience was 10.1 years. 
Participants identified as follows: 62.5% male, 34.5% female and 0.6% 
gender variant/non-conforming. The mean age was 35.2 years (standard 
deviation 9.4 years).

Procedure. First, participants were briefed on the experimental task and 
provided their informed consent to proceed to the experiment. Demo-
graphic information was then collected, including gender identity, 
age, country, current position and years of experience in neuroscience 
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research, broadly construed. Next, participants completed a practice 
trial using the same testing format as the actual test cases. This trial 
was used to familiarize participants with the format of the task, with 
the screen proceeding only once participants had made the correct 
choice based on common sense. Following this, nine test trials and 
two catch trials commenced, where participants selected one version 
of each trial abstract. Out of the nine test trials, six were randomly 
sampled human-created test cases and three were randomly sampled 
from the pool of machine-created items. We ensured that each test 
case is sampled approximately an equal number of times across all 
participants. To achieve this, we maintained a global counter that keeps 
track of how frequently each test case has been used. As a result, the 
next participant’s sample will always be drawn from those test cases 
that have been used less frequently. Notably, the number of altera-
tions varies between test cases, but the design allowed a single click to 
automatically select between the two abstract options (Supplementary 
Fig. 1). Participants made one decision per test case, regardless of the 
number of alternations.

Subsequently, participants were required to rate their confidence 
and expertise using slider bars. The confidence slider had a range from 
‘lower’ on the left to ‘higher’ on the right, while the expertise slider 
spanned from ‘not at all’ on the left to ‘very much so’ on the right, both 
internally implementing a 1–100 scaling. In addition, participants 
indicated whether they had encountered the study previously before 
proceeding to the next trial. Upon completing the 11 trials, participants 
were debriefed on which trials they got correct and were subsequently 
asked to indicate whether they engaged in any form of cheating dur-
ing the study. We hosted the study entirely on the Gorilla platform35.

Exclusion criteria. For participant selection and data analysis, we apply 
several exclusion criteria. First, individuals who failed to answer both 
catch trials correctly were not included in the data analyses. Second, 
participants who did not make adjustments to the sliders (that is, 
expertise and confidence) during any of the trials were excluded. In 
addition, trials where participants recognized the abstract content 
were omitted from the analysis. Furthermore, trials with reaction 
times less than 5 s were excluded. Lastly, participants who admitted 
to using external resources or engaging in cheating behaviours, as 
indicated by a checkbox in the debriefing form, were not considered 
in the final data analysis.

Performance correlation between humans and LLMs. We assessed the 
agreement between humans and LLMs using a similar approach as we 
did when evaluating the correlation among LLMs. For LLMs, the pro-
cedure for determining item difficulty was identical to that described 
above. For human experts, item difficulty was calculated as the mean 
accuracy for that item. Finally, the Spearman correlation of these dif-
ficulty measures was calculated to assess agreement.

Fine-tuning on neuroscience corpora
The LLMs we considered had been pre-training on a diverse range 
of text corpora, including Internet sources, Wikipedia, books, code 
repositories and arXiv papers. While these pre-trained models are 
designed to be versatile and capable of handling various tasks, our 
approach for creating BrainGPT involved enhancing base models with 
domain-specific expertise, specifically in neuroscience.

To accomplish this, we employed the LoRA technique (Supple-
mentary Fig. 19 and ref. 24). LoRA efficiently extends the capabilities of 
general-purpose LLMs by introducing low-rank trainable parameters 
(referred to as ‘adapters’) into the existing model. This process effec-
tively fine-tunes the model for downstream tasks without the need for 
prohibitively resource-intensive training of the entire model.

Training data. We collected training data from PubMed for abstracts 
and PubMed Central Open Access Subset (PMC OAS) for full-text 

articles using the Entrez Programming Utilities (E-utilities) API (applica-
tion programming interface) and the pubget Python package, respec-
tively. The data span publication dates from 2002 to 2022. For science 
general journals, we applied a keyword filter of ‘Neuroscience’ (see all 
sourced journals in Supplementary Table 4).

Our data extraction efforts yielded 332,807 abstracts and 123,085 
full-text articles, totalling 1.3 billion tokens. We excluded figures and 
tables and randomly allocated 90% of the data for training, reserving 
the remaining 10% for validation.

Training details. We fine-tuned Mistral-7B-v0.121 using weights availa-
ble on Huggingface (https://huggingface.co/mistralai/Mistral-7B-v0.1). 
We used a batch size of 1 and a chunk size of 2,048. Training involved the 
use of the AdamW optimizer36 with a learning rate of 2 × 10−5 and gradi-
ent accumulation steps set at 8. Two training epochs were performed, 
along with a warm-up step of 0.03 and a weight decay rate of 0.001. The 
learning rate was controlled using a cosine learning rate scheduler. 
LoRA adapters, characterized by a rank of 256, an alpha value of 512 
and a dropout rate of 0.1, were applied after all self-attention blocks 
and fully connected layers. This results in total 629,145,600 trainable 
parameters, roughly 8% of the entire parameters of the base model. To 
optimize training performance, bf16 mixed precision training and data 
parallelism were employed. We used four Nvidia A100 (80 GB) graphics 
processing units hosted on the Microsoft Azure platform. An epoch of 
training takes roughly 65 graphics processing unit hours.

Evaluation. We tested the fine-tuned model on BrainBench using the 
same procedure as before. To verify the significance of performance 
improvement, we performed a paired t-test with respect to the perplex-
ity of the correct options before and after fine-tuning.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Human participant data, and intermediate data generated via simula-
tions and analyses, are publicly available via GitHub at https://github. 
com/braingpt-lovelab/BrainBench. Model weights and training data 
are available at https://huggingface.co/BrainGPT. Model training data 
are sourced from PubMed and PubMed Central Open Access Subset 
(PMC OAS) using the Entrez Programming Utilities (E-utilities) API and 
the pubget Python package, respectively.

Code availability
All computer code associated with this work including model training, 
evaluation, data processing and analyses are publicly available via 
GitHub at https://github.com/braingpt-lovelab/BrainBench.
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